Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Neuromuscul Disord ; 39: 24-29, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714145

RESUMO

Structural variants (SVs) are infrequently observed in Duchenne muscular dystrophy (DMD), a condition mainly marked by deletions and point mutations in the DMD gene. SVs in DMD remain difficult to reliably detect due to the limited SV-detection capacity of conventionally used short-read sequencing technology. Herein, we present a family, a boy and his mother, with clinical signs of muscular dystrophy, elevated creatinine kinase levels, and intellectual disability. A muscle biopsy from the boy showed dystrophin deficiency. Routine molecular techniques failed to detect abnormalities in the DMD gene, however, dystrophin mRNA transcripts analysis revealed an absence of exons 59 to 79. Subsequent long-read whole-genome sequencing identified a rare complex structural variant, a 77 kb novel intragenic inversion, and a balanced translocation t(X;1)(p21.2;p13.3) rearrangement within the DMD gene, expanding the genetic spectrum of dystrophinopathy. Our findings suggested that SVs should be considered in cases where conventional molecular techniques fail to identify pathogenic variants.

2.
Sci Rep ; 14(1): 10374, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710787

RESUMO

To elucidate the neurological features of Hansen disease. The medical records of patients with confirmed Hansen disease transferred from the neurology department were reviewed, and all medical and neurological manifestations of Hansen disease were assessed. Eleven patients with confirmed Hansen disease, 10 with newly detected Hansen disease and 1 with relapsed Hansen disease, who visited neurology departments were enrolled. The newly detected patients with Hansen disease were classified as having lepromatous leprosy (LL, n = 1), borderline lepromatous leprosy (BL, n = 2), borderline leprosy (BB, n = 2), borderline tuberculoid leprosy (BT, n = 1), tuberculoid leprosy (TT, n = 2), or pure neural leprosy (PNL, n = 2). All of the patients with confirmed Hansen were diagnosed with peripheral neuropathy (100.00%, 11/11). The symptoms and signs presented were mainly limb numbness (100.00%, 11/11), sensory and motor dysfunction (100.00%, 11/11), decreased muscle strength (90.90%, 10/11), and skin lesions (81.81%, 9/11). Nerve morphological features in nerve ultrasonography (US) included peripheral nerve asymmetry and segmental thickening (100.00%, 9/9). For neuro-electrophysiology feature, the frequency of no response of sensory nerves was significantly higher than those of motor nerves [(51.21% 42/82) vs (24.70%, 21/85)(P = 0.0183*)] by electrodiagnostic (EDX) studies. Nerve histological features in nerve biopsy analysis included demyelination (100.00%, 5/5) and axonal damage (60.00%, 3/5). In addition to confirmed diagnoses by acid-fast bacteria (AFB) staining (54.54%, 6/11) and skin pathology analysis (100.00%, 8/8), serology and molecular technology were positive in 36.36% (4/11) and 100.00% (11/11) of confirmed patients of Hansen disease, respectively. It is not uncommon for patients of Hansen disease to visit neurology departments due to peripheral neuropathy. The main pathological features of affected nerves are demyelination and axonal damage. The combination of nerve US, EDX studies, nerve biopsy, and serological and molecular tests can improve the diagnosis of Hansen disease.


Assuntos
Hanseníase , Doenças do Sistema Nervoso Periférico , Humanos , Masculino , Feminino , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Hanseníase/patologia , Hanseníase/diagnóstico , Hanseníase/complicações , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/patologia , Idoso , Adulto Jovem
3.
J Med Chem ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687966

RESUMO

Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.

4.
AAPS J ; 26(3): 36, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546903

RESUMO

Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4600 compounds generated many hits for many drug-metabolizing enzymes including the two time-dependent and selective aldehyde oxidase inhibitors, erlotinib and dibenzothiophene. The hit rate is much higher than that for the traditional HTS for biological targets due to the promiscuous nature of the drug-metabolizing enzymes and the biased compound selection process. Future efforts will focus on using this method to identify selective inhibitors for enzymes that do not currently have quality hits and thoroughly characterizing the newly identified selective inhibitors from our screen. We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450 , Hepatócitos , Inibidores Enzimáticos/farmacologia
5.
AAPS J ; 26(3): 38, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548986

RESUMO

Hepatocytes are one of the most physiologically relevant in vitro liver systems for human translation of clearance and drug-drug interactions (DDI). However, the cell membranes of hepatocytes can limit the entry of certain compounds into the cells for metabolism and DDI. Passive permeability through hepatocytes can be different in vitro and in vivo, which complicates the human translation. Permeabilized hepatocytes offer a useful tool to probe mechanistic understanding of permeability-limited metabolism and DDI. Incubation with saponin of 0.01% at 0.5 million cells/mL and 0.05% at 5 million cells/mL for 5 min at 37°C completely permeabilized the plasma membrane of hepatocytes, while leaving the membranes of subcellular organelles intact. Permeabilized hepatocytes maintained similar enzymatic activity as intact unpermeabilized hepatocytes and can be stored at -80°C for at least 7 months. This approach reduces costs by preserving leftover hepatocytes. The relatively low levels of saponin in permeabilized hepatocytes had no significant impact on the enzymatic activity. As the cytosolic contents leak out from permeabilized hepatocytes, cofactors need to be added to enable metabolic reactions. Cytosolic enzymes will no longer be present if the media are removed after cells are permeabilized. Hence permeabilized hepatocytes with and without media removal may potentially enable reaction phenotyping of cytosolic enzymes. Although permeabilized hepatocytes work similarly as human liver microsomes and S9 fractions experimentally requiring addition of cofactors, they behave more like hepatocytes maintaining enzymatic activities for over 4 h. Permeabilized hepatocytes are a great addition to the drug metabolism toolbox to provide mechanistic insights.


Assuntos
Fígado , Saponinas , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Descoberta de Drogas , Microssomos Hepáticos , Saponinas/farmacologia , Saponinas/metabolismo
6.
AAPS J ; 26(2): 26, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366061

RESUMO

CYP3A is one of the most important classes of enzymes and is involved in the metabolism of over 70% drugs. While several selective CYP3A4 inhibitors have been identified, the search for a selective CYP3A5 inhibitor has turned out to be rather challenging. Recently, several selective CYP3A5 inhibitors have been identified through high-throughput screening of ~ 11,000 compounds and hit expansion using human recombinant enzymes. We set forth to characterize the three most selective CYP3A5 inhibitors in a more physiologically relevant system of human liver microsomes to understand if these inhibitors can be used for reaction phenotyping studies in drug discovery settings. Gomisin A and T-5 were used as selective substrate reactions for CYP3A4 and CYP3A5 to determine IC50 values of the two enzymes. The results showed that clobetasol propionate and loteprednol etabonate were potent and selective CYP3A5 reversible inhibitors with selectivity of 24-fold against CYP3A4 and 39-fold or more against the other major CYPs. The selectivity of difluprednate in HLM is much weaker than that in the recombinant enzymes due to hydrolysis of the acetate group in HLM. Based on the selectivity data, loteprednol etabonate can be utilized as an orthogonal approach, when experimental fraction metabolized of CYP3A5 is greater than 0.5, to understand CYP3A5 contribution to drug metabolism and its clinical significance. Future endeavors to identify even more selective CYP3A5 inhibitors are warranted to enable accurate determination of CYP3A5 contribution to metabolism versus CYP3A4.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Humanos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Etabonato de Loteprednol , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
7.
J Pharm Sci ; 113(1): 64-71, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37805075

RESUMO

PAXLOVID™ is a combination medicine of nirmatrelvir tablets co-packaged with ritonavir tablets. Nirmatrelvir is a peptidomimetic inhibitor of SARS-CoV2 main protease (Mpro), developed for the treatment of COVID-19. Ritonavir is co-administered as a pharmacokinetics (PK) enhancer to inhibit CYP3A mediated metabolism increasing exposures of nirmatrelvir. In the solid form, nirmatrelvir exists in a stable single conformational state (ANTI form). However, nirmatrelvir exhibits atropisomerism in solution whereby upon dissolution the ANTI rotational isomer reversibly converts to another conformation state (SYN form). Nirmatrelvir rotamer conversion follows pseudo first order kinetics with a conversion half-life of approximately 15 min in aqueous solutions, which is on a similar time scale of diffusion mediated dissolution from the solid form. In vitro dissolution studies further indicated that rotamer conversion is one of the processes controlling nirmatrelvir dissolution. It was hypothesized that rotamer conversion kinetics would affect oral absorption of nirmatrelvir in vivo. Consequently, a physiologically based pharmacokinetic (PBPK) model for Paxlovid was developed in Simcyp™ using the advanced dissolution, absorption, and metabolism model (ADAM) by incorporating rotamer conversion kinetics to achieve a more mechanistic description of nirmatrelvir oral absorption. The results demonstrate that the established absorption model with rotamer kinetics adequately described observed clinical data from various nirmatrelvir doses, dosage forms, and dosing regimens. The predicted vs. observed AUCinf and Cmax ratios were within 2-fold. The model has been internally used to inform clinical studies and dose recommendations for pediatrics.


Assuntos
RNA Viral , Ritonavir , Humanos , Criança , Solubilidade , Antivirais
8.
QJM ; 117(2): 109-118, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37802883

RESUMO

BACKGROUND: The environmental effects on the prognosis of ocular myasthenia gravis (OMG) remain largely unexplored. AIM: To investigate the association between specific environmental factors and the generalization of OMG. DESIGN: The cohort study was conducted in China based on a nationwide multicenter database. METHODS: Adult patients with OMG at onset, who were followed up for at least 2 years until May 2022, were included. We collected data on demographic and clinical factors, as well as environmental factors, including latitude, socioeconomic status (per capita disposable income [PDI] at provincial level and education) and smoking. The study outcome was the time to the development of generalized myasthenia gravis (GMG). Cox models were employed to examine the association between environmental exposures and generalization. Restricted cubic spline was used to model the association of latitude with generalization risk. RESULTS: A total of 1396 participants were included. During a median follow-up of 5.15 (interquartile range [IQR] 3.37-9.03) years, 735 patients developed GMG within a median of 5.69 (IQR 1.10-15.66) years. Latitude of 20-50°N showed a U-shaped relation with generalization risk, with the lowest risk at around 30°N; both higher and lower latitudes were associated with the increased risk (P for non-linearity <0.001). Living in areas with lower PDI had 1.28-2.11 times higher risk of generalization. No significant association was observed with education or smoking. CONCLUSIONS: Latitude and provincial-level PDI were associated with the generalization of OMG in China. Further studies are warranted to validate our findings and investigate their potential applications in clinical practice and health policy.


Assuntos
Miastenia Gravis , Adulto , Humanos , Estudos de Coortes , Progressão da Doença , Miastenia Gravis/epidemiologia , Miastenia Gravis/complicações , Prognóstico , Estudos Retrospectivos
9.
J Pharm Sci ; 113(3): 826-835, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38042346

RESUMO

Tumor binding is an important parameter to derive unbound tumor concentration to explore pharmacokinetics (PK) and pharmacodynamics (PD) relationships for oncology disease targets. Tumor binding was evaluated using eleven matrices, including various commonly used ex vivo human and mouse xenograft and syngeneic tumors, tumor cell lines and liver as a surrogate tissue. The results showed that tumor binding is highly correlated among the different tumors and tumor cell lines except for the mouse melanoma (B16F10) tumor type. Liver fraction unbound (fu) has a good correlation with B16F10 tumor binding. Liver also demonstrates a two-fold equivalency, on average, with binding of other tumor types when a scaling factor is applied. Predictive models were developed for tumor binding, with correlations established with LogD (acids), predicted muscle fu (neutrals) and measured plasma protein binding (bases) to estimate tumor fu when experimental data are not available. Many approaches can be applied to obtain and estimate tumor binding values. One strategy proposed is to use a surrogate tumor tissue, such as mouse xenograft ovarian cancer (OVCAR3) tumor, as a surrogate for tumor binding (except for B16F10) to provide an early assessment of unbound tumor concentrations for development of PK/PD relationships.


Assuntos
Apoptose , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Linhagem Celular Tumoral , Proteínas Sanguíneas/metabolismo , Ligação Proteica , Descoberta de Drogas
10.
J Med Genet ; 61(4): 340-346, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37923380

RESUMO

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.


Assuntos
Distrofias Musculares , Adulto , Humanos , Distrofias Musculares/genética , Fenótipo , Corpos de Inclusão Intranuclear/genética , Expansão das Repetições de Trinucleotídeos/genética
11.
AAPS J ; 25(6): 98, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798423

RESUMO

CYP1A1 is a cytochrome P450 family 1 enzyme that is mostly expressed in the extrahepatic tissues. To understand the CYP1A1 contribution to drug clearance in humans, we examined the in vitro-in vivo extrapolation (IVIVE) of intrinsic clearance (CLint) for a set of drugs that are in vitro CYP1A1 substrates. Despite being strong in vitro CYP1A1 substrates, 82% of drugs gave good IVIVE with predicted CLint within 2-3-fold of the observed values using human liver microsomes and hepatocytes, suggesting they were not in vivo CYP1A1 substrates due to the lack of extrahepatic contribution to CLint. Only three drugs (riluzole, melatonin and ramelteon) that are CYP1A2 substrates yielded significant underprediction of in vivo CLint up to 11-fold. The fold of CLint underprediction was linearly proportional to human recombinant CYP1A1 (rCYP1A1) CLint, indicating they were likely to be in vivo CYP1A1 substrates. Using these three substrates, a calibration curve can be developed to enable direct translation from in vitro rCYP1A1 CLint to in vivo extrahepatic contributions in humans. In vivo CYP1A1 substrates are planar and small, which is consistent with the structure of the active site. This is in contrast to the in vitro substrates, which include large and nonplanar molecules, suggesting rCYP1A1 is more accessible than what is in vivo. The impact of CYP1A1 on first-pass intestinal metabolism was also evaluated and shown to be minimal. This is the first study providing new insights on in vivo translation of CYP1A1 contributions to human clearance using in vitro rCYP1A1 data.


Assuntos
Citocromo P-450 CYP1A1 , Fígado , Humanos , Citocromo P-450 CYP1A1/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo
12.
Mol Pharm ; 20(11): 5616-5630, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37812508

RESUMO

Accurate prediction of human pharmacokinetics (PK) remains one of the key objectives of drug metabolism and PK (DMPK) scientists in drug discovery projects. This is typically performed by using in vitro-in vivo extrapolation (IVIVE) based on mechanistic PK models. In recent years, machine learning (ML), with its ability to harness patterns from previous outcomes to predict future events, has gained increased popularity in application to absorption, distribution, metabolism, and excretion (ADME) sciences. This study compares the performance of various ML and mechanistic models for the prediction of human IV clearance for a large (645) set of diverse compounds with literature human IV PK data, as well as measured relevant in vitro end points. ML models were built using multiple approaches for the descriptors: (1) calculated physical properties and structural descriptors based on chemical structure alone (classical QSAR/QSPR); (2) in vitro measured inputs only with no structure-based descriptors (ML IVIVE); and (3) in silico ML IVIVE using in silico model predictions for the in vitro inputs. For the mechanistic models, well-stirred and parallel-tube liver models were considered with and without the use of empirical scaling factors and with and without renal clearance. The best ML model for the prediction of in vivo human intrinsic clearance (CLint) was an in vitro ML IVIVE model using only six in vitro inputs with an average absolute fold error (AAFE) of 2.5. The best mechanistic model used the parallel-tube liver model, with empirical scaling factors resulting in an AAFE of 2.8. The corresponding mechanistic model with full in silico inputs achieved an AAFE of 3.3. These relative performances of the models were confirmed with the prediction of 16 Pfizer drug candidates that were not part of the original data set. Results show that ML IVIVE models are comparable to or superior to their best mechanistic counterparts. We also show that ML IVIVE models can be used to derive insights into factors for the improvement of mechanistic PK prediction.


Assuntos
Líquidos Corporais , Humanos , Simulação por Computador , Descoberta de Drogas , Cinética , Aprendizado de Máquina , Modelos Biológicos , Taxa de Depuração Metabólica
13.
Expert Opin Drug Discov ; 18(11): 1209-1219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37526497

RESUMO

INTRODUCTION: Low metabolic clearance is usually a highly desirable property of drug candidates in order to reduce dose and dosing frequency. However, measurement of low clearance can be challenging in drug discovery. A number of new tools have recently been developed to address the gaps in the measurement of intrinsic clearance, identification of metabolites, and reaction phenotyping of low clearance compounds. AREAS COVERED: The new methodologies of low clearance measurements are discussed, including the hepatocyte relay, HepatoPac®, HµREL®, and spheroid systems. In addition, metabolite formation rate determination and in vivo allometric scaling approaches are covered as alternative methods for low clearance measurements. With these new methods, measurement of ~ 20-fold lower limit of intrinsic clearance can be achieved. The advantages and limitations of each approach are highlighted. EXPERT OPINION: Although several novel methods have been developed in recent years to address the challenges of low clearance, these assays tend to be time and labor intensive and costly. Future innovations focusing on developing systems with high enzymatic activities, ultra-sensitive universal quantifiable detectors, and artificial intelligence will further enhance our ability to explore the low clearance space.


Assuntos
Inteligência Artificial , Hepatócitos , Humanos , Hepatócitos/metabolismo , Descoberta de Drogas/métodos , Preparações Farmacêuticas/metabolismo
14.
Mult Scler Relat Disord ; 77: 104797, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37402345

RESUMO

OBJECTIVE: To assess the characteristics of Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disorder (MOGAD) with brainstem involvement in the first event (BSIFE) and make comparisons with aquaporin-4-IgG seropositive neuromyelitis optica spectrum disorder (AQP4-IgG-NMOSD) and multiple sclerosis (MS). METHODS: From 2017 to 2022, this study identified MOG-IgG-positive patients with brainstem or both brainstem and cerebellum lesions in the first episode. As a comparison group, AQP4-IgG-NMOSD (n = 30) and MS (n = 30) patients with BSIFE were enroled. RESULTS: Thirty-five patients (35/146, 24.0%) were the BSIFE of MOGAD. Isolated brainstem episodes occurred in 9 of the 35 (25.7%) MOGAD patients, which was similar to MS (7/30, 23.3%) but was lower than AQP4-IgG-NMOSD (17/30, 56.7%, P = 0.011). Pons (21/35, 60.0%), medulla oblongata (20/35, 57.1%) and middle cerebellar peduncle (MCP, 19/35, 54.3%) were the most frequently affected areas. Intractable nausea (n = 7), vomiting (n = 8) and hiccups (n = 2) happened in MOGAD patients, but EDSS of MOGAD was lower than AQP4-IgG-NMOSD (P = 0.001) at the last follow-up. MOGAD patients with or without BSIFE did not significantly differ in terms of the ARR (P = 0.102), mRS (P = 0.823), or EDSS (P = 0.598) at the most recent follow-up. Specific oligoclonal bands appeared in MOGAD (13/33, 39.4%) and AQP4-IgG-NMOSD (7/24, 29.2%) in addition to MS (20/30, 66.7%). Fourteen MOGAD patients (40.0%) experienced relapse in this study. When the brainstem was involved in the first attack, there was an increased likelihood of a second attack occurring at the same location (OR=12.22, 95%CI 2.79 to 53.59, P = 0.001). If the first and second events were both in the brainstem, the third event was likely to occur at the same location (OR=66.00, 95%CI 3.47 to 1254.57, P = 0.005). Four patients experienced relapses after the MOG-IgG turned negative. CONCLUSION: BSIFE occurred in 24.0% of MOGAD. Pons, medulla oblongata and MCP were the most frequently involved regions. Intractable nausea, vomiting and hiccups occurred in MOGAD and AQP4-IgG-NMOSD, but not MS. The prognosis of MOGAD was better than AQP4-IgG-NMOSD. In contrast to MS, BSIFE may not indicate a worse prognosis for MOGAD. When patients with BSIFE, MOGAD tent to reoccur in the brainstem. Four of the 14 recurring MOGAD patients relapsed after the MOG-IgG test turned negative.


Assuntos
Soluço , Esclerose Múltipla , Neuromielite Óptica , Humanos , Aquaporina 4 , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica/diagnóstico por imagem , Esclerose Múltipla/diagnóstico , Tronco Encefálico/diagnóstico por imagem , Imunoglobulina G , Autoanticorpos
15.
Int J Biol Sci ; 19(7): 2081-2096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151877

RESUMO

Platinum drug-based chemotherapy plays a dominant role in OC (ovarian cancer) treatment. The expression of DNA damage repair (DDR) genes is critical in distinguishing drug-sensitive and drug-refractory patients, as well as in the development of drug resistance in long-term treated patients. CtBP is a highly expressed oncogene in OC and was found to repress DDR genes expression in our previous study. In the present study, the formation of CtBP dimers in live cells was studied, and the functional differences between monomeric and oligomeric CtBP were explored by CHIP-seq and RNA-seq. Besides, the dynamics of CtBP dimer formation in response to the metabolic modulation were investigated by the protein fragment complementation (PCA) assays. We show that dimerized CtBP, but not the dimerization-defective mutant, binds to and represses DDR gene expression in OC cells. Treatment of the mice tumors grown from engrafted OC cells by cisplatin disclosed that high-level CtBP expression promotes the CtBP dimerization and increases the therapeutic effect of cisplatin. Moreover, the CtBP dimerization is responsive to the intracellular metabolic status as represented by the free NADH abundance. Metformin was found to increase the dimerization of CtBP and potentiate the therapeutic effect of cisplatin in a CtBP dimerization-dependent manner. Our data suggest that the CtBP dimerization status is a potential biomarker to predict platinum drug sensitivity in patients with ovarian cancer and a target of metformin to improve the therapeutic effect of platinum drugs in OC treatment.


Assuntos
Metformina , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Dano ao DNA/genética , Metformina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
16.
Pharm Res ; 40(8): 1927-1938, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37231296

RESUMO

PURPOSE: PAXLOVID™ is nirmatrelvir tablets co-packaged with ritonavir tablets. Ritonavir is used as a pharmacokinetics (PK) enhancer to reduce metabolism and increase exposure of nirmatrelvir. This is the first disclosure of Paxlovid physiologically-based pharmacokinetic (PBPK) model. METHODS: Nirmatrelvir PBPK model with first-order absorption kinetics was developed using in vitro, preclinical, and clinical data of nirmatrelvir in the presence and absence of ritonavir. Clearance and volume of distribution were derived from nirmatrelvir PK obtained using a spray-dried dispersion (SDD) formulation where it is considered to be dosed as an oral solution, and absorption is near complete. The fraction of nirmatrelvir metabolized by CYP3A was estimated based on in vitro and clinical ritonavir drug-drug interaction (DDI) data. First-order absorption parameters were established for both SDD and tablet formulation using clinical data. Nirmatrelvir PBPK model was verified with both single and multiple dose human PK data, as well as DDI studies. Simcyp® first-order ritonavir compound file was also verified with additional clinical data. RESULTS: The nirmatrelvir PBPK model described the observed PK profiles of nirmatrelvir well with predicted AUC and Cmax values within ± 20% of the observed. The ritonavir model performed well resulting in predicted values within twofold of observed. CONCLUSIONS: Paxlovid PBPK model developed in this study can be applied to predict PK changes in special populations, as well as model the effect of victim and perpetrator DDI. PBPK modeling continues to play a critical role in accelerating drug discovery and development of potential treatments for devastating diseases such as COVID-19. NCT05263895, NCT05129475, NCT05032950 and NCT05064800.


Assuntos
COVID-19 , Ritonavir , Humanos , Ritonavir/farmacocinética , Simulação por Computador , Cinética , Interações Medicamentosas , Modelos Biológicos
17.
AAPS J ; 25(3): 40, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052732

RESUMO

In vitro-in vivo extrapolation ((IVIVE) and empirical scaling factors (SF) of human intrinsic clearance (CLint) were developed using one of the largest dataset of 455 compounds with data from human liver microsomes (HLM) and human hepatocytes (HHEP). For extended clearance classification system (ECCS) class 2/4 compounds, linear SFs (SFlin) are approximately 1, suggesting enzyme activities in HLM and HHEP are similar to those in vivo under physiological conditions. For ECCS class 1A/1B compounds, a unified set of SFs was developed for CLint. These SFs contain both SFlin and an exponential SF (SFß) of fraction unbound in plasma (fu,p). The unified SFs for class 1A/1B eliminate the need to identify the transporters involved prior to clearance prediction. The underlying mechanisms of these SFs are not entirely clear at this point, but they serve practical purposes to reduce biases and increase prediction accuracy. Similar SFs have also been developed for preclinical species. For HLM-HHEP disconnect (HLM > HHEP) ECCS class 2/4 compounds that are mainly metabolized by cytochrome P450s/FMO, HLM significantly overpredicted in vivo CLint, while HHEP slightly underpredicted and geometric mean of HLM and HHEP slightly overpredicted in vivo CLint. This observation is different than in rats, where rat liver microsomal CLint correlates well with in vivo CLint for compounds demonstrating permeability-limited metabolism. The good CLint IVIVE developed using HLM and HHEP helps build confidence for prospective predictions of human clearance and supports the continued utilization of these assays to guide structure-activity relationships to improve metabolic stability.


Assuntos
Fígado , Microssomos Hepáticos , Humanos , Ratos , Animais , Microssomos Hepáticos/metabolismo , Fígado/metabolismo , Estudos Prospectivos , Taxa de Depuração Metabólica/fisiologia , Hepatócitos/metabolismo , Modelos Biológicos
18.
Clin Genet ; 104(3): 387-389, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102570

RESUMO

Polyglucosan body myopathy type 1 (PGBM1, OMIM #615895.) is a rare autosomal recessive disorder caused by RBCK1 mutations. The patients displayed polyglucosan accumulation in skeletal and cardiac muscles, giving rise to loss of ambulation and heart failure with or without immune system dysregulation. So far, only 24 patients have been reported, all of whom exhibited symptoms before adulthood. Here, we reported the first case of an adult-onset PGBM1 patient with a novel compound heterozygous RBCK1 gene mutation consisting of a nonsense and synonymous variant affecting splicing.


Assuntos
Doenças Musculares , Humanos , Doenças Musculares/genética , Mutação/genética , Códon , Fenótipo , Genótipo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
19.
Xenobiotica ; 53(1): 12-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36803165

RESUMO

Plasma protein binding (PPB) studies on the SARS-CoV-2 main protease inhibitor nirmatrelvir revealed considerable species differences primarily in dog and rabbit, which prompted further investigations into the biochemical basis for these differences.The unbound fraction (fu) of nirmatrelvir in dog and rabbit plasma was concentration (2-200 µM)-dependent (dog fu,p 0.024-0.69, rabbit fu,p 0.010-0.82). Concentration (0.1-100 µM)-dependent binding in serum albumin (SA) (fu,SA 0.040-0.82) and alpha-1-acid glycoprotein (AAG) (fu,AAG 0.050-0.64) was observed in dogs. Nirmatrelvir showed minimal binding to rabbit SA (1-100 µM: fu,SA 0.70-0.79), while binding to rabbit AAG was concentration-dependent (0.1-100 µM: fu,AAG 0.024-0.66). In contrast, nirmatrelvir (2 µM) revealed minimal binding (fu,AAG 0.79-0.88) to AAG from rat and monkeys. Nirmatrelvir showed minimal-to-moderate binding to SA (1-100 µM; fu,SA 0.70-1.0) and AAG (0.1-100 µM; fu,AAG 0.48-0.58) from humans across tested concentrations.Nirmatrelvir molecular docking studies using published crystal structures and homology models of human and preclinical species SA and AAG were used to rationalise the species differences to plasma proteins. This suggested that species differences in PPB are primarily driven by molecular differences in albumin and AAG resulting in differences in binding affinity.


Assuntos
Anti-Infecciosos , COVID-19 , Ratos , Humanos , Animais , Cães , Coelhos , Ligação Proteica , SARS-CoV-2/metabolismo , Inibidores de Proteases , Especificidade da Espécie , Simulação de Acoplamento Molecular , Proteínas Sanguíneas/metabolismo , Albumina Sérica/metabolismo , Orosomucoide/metabolismo , Antivirais , Inibidores Enzimáticos
20.
Ann Clin Transl Neurol ; 10(4): 589-598, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808840

RESUMO

OBJECTIVE: Use of tacrolimus in mild to moderate myasthenia gravis (MG) is generally limited to glucocorticoid-refractory cases; the advantage of mono-tacrolimus over mono-glucocorticoids is unknown. METHODS: We included mild to moderate MG patients treated with mono-tacrolimus (mono-TAC) or mono-glucocorticoids (mono-GC). The correlation between the immunotherapy options and the treatment efficacy and side effects were examined in 1:1 propensity-score matching. The main outcome was time to minimal manifestations status or better (MMS or better). Secondary outcomes include time to relapse, the mean changes in Myasthenia Gravis-specific Activities of Daily Living (MG-ADL) scores and the rate of adverse events. RESULTS: Baseline characteristics showed no difference between matched groups (49 matched pairs). There were no differences in median time to MMS or better between the mono-TAC group and mono-GC group (5.1 vs. 2.8 months: unadjusted hazard ratio [HR], 0.73; 95% CI, 0.46-1.16; p = 0.180), as well as in median time to relapse (data unavailable for the mono-TAC group since 44 of 49 [89.8%] participants remained in MMS or better; 39.7 months in mono-GC group: unadjusted HR, 0.67; 95% CI, 0.23-1.97; p = 0.464). Changes in MG-ADL scores between the two groups were similar (mean differences, 0.3; 95% CI, -0.4 to 1.0; p = 0.462). The rate of adverse events was lower in the mono-TAC group compared to the mono-GC group (24.5% vs. 55.1%, p = 0.002). INTERPRETATION: Mono-tacrolimus performs superior tolerability with non-inferior efficacy compared to mono-glucocorticoids in mild to moderate myasthenia gravis patients who refuse or have a contraindication to glucocorticoids.


Assuntos
Miastenia Gravis , Tacrolimo , Humanos , Tacrolimo/efeitos adversos , Glucocorticoides/efeitos adversos , Atividades Cotidianas , Recidiva Local de Neoplasia/induzido quimicamente , Recidiva Local de Neoplasia/tratamento farmacológico , Miastenia Gravis/tratamento farmacológico , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA